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Optimal prediction methods compensate for a lack of resolution in the numerical
solution of time-dependent differential equations through the use of prior statistical
information. We present a new derivation of the basic methodology, show that field-
theoretical perturbation theory provides a useful device for dealing with quasi-linear
problems, and provide a nonlinear example that illuminates the difference between
a pseudo-spectral method and an optimal prediction method with Fourier kernels.
Along the way, we explain the differences and similarities between optimal pre-
diction, the representer method in data assimilation, and duality methods for finding
weak solutions. We also discuss the conditions under which a simple implementation
of the optimal prediction method can be expected to perform wejl2000 Academic Press
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1. INTRODUCTION

We consider a Cauchy problem

{ut = R(X, U, Uy, Uxy, - . .), 1)
u(x, 0) = Uo(X),
whereR(X, u, uy .. .) is a (generally nonlinear) function af= u(x, t), of its spatial deriva-
tives, and of the independent variabigin any number of dimensions; subscripts denote
differentiation. We assume that we cannot afford to use enough computational elem
(for example, mesh points) to resolve the problem adequately, or that we do not wist
use many computational elements because we are only interested in some of the fea
of the solutions and it seems to be wasteful to compute all the details. We also assume
we have some prior statistical information about the distribution of possible solutions. T
guestion we address is how the prior statistics can be used to obviate the need for resolL
In contrast to problems that arise in some applications, especially in geophysics [1], we
sume that the equations we are solving are fully known, and that the data are knowabl
principle, even if we may not be able or willing to store them all in a computer’s memor
In the present paper we assume that our statistical information consists of an invar
measure: on the space of solutions; i.e., we assume that the initial data are sampled fro
probability distribution on the space of data, and that, in principle, if one takes one instal
of initial data after the other and computes the solutions produced by (1) at any later ti
t, then the set of solutions obtained at that later tinfeiewed as functions of the spatial
variables) has the same probability distribution as the set of initial data. We assume fur
that this probability distribution is explicitly known. In Section 4 below we give an exampl
where these assumptions are satisfied and provide more precise definitions. Our pre
assumptions may be unnecessarily strong for some practical problems, but they simj
the exposition and it is often easy to weaken them. We shall call the invariant measure
prior measurethus the prior measure is the distribution of the data before anything has be
specified about a particular problem. In Hamiltonian systems a natural prior measure is
canonical measure induced by the Hamiltor#tan.e., a measure defined by the probability
density

f(uy = 2 e HW/T,

whereZ is a normalization constant and the param@&tawhich determines the variance of
the density, is known as the “temperature.” We do not assume that the differential equa
(1) admits a unique invariant measure; in cases of non-uniqueness the right choice of mee
is part of the formulation of the problem. We shall apply our methods to Hamiltonian part
differential equations and expect that standard physically motivated assumptions abou
ergodicity of Hamiltonian systems apply, see, e.g., [15]; we stay away from integral
systems where these assumptions do not apply.

We further assume that all we know, or care to know, at tim®, is a small set of data.
In the present paper we choose these data to be of the form

(ga,u)z/ga(x)u(x,O)dx=Va, a=1,...,N, (2)
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where they, = g, (X) are suitably chosen kernels (the choice of kerggis at our disposal).
The question we are asking can now be rephrased as follows: How do we best predic
future using onlyN variables defined as in (2), given the prior measgure

Attimet =0 one can, at least in principle, find the mean solution conditioned by the d:
(2), for every poini, i.e., at eackx one can average over all those functions in the suppo
of the invariant measure that also satisfy the conditions (2) and find the srm&fangiven
the valuesv,, « =1, ..., N; symbolically,

v(X) = E[u(X) | V1, ..., W, 3)

whereE[-] denotes an expectation value. This is a regression problem, which can be sol
by standard tools ([21], see also below). If one is given only the information contained
(2), this regression is the right substitute for a more detailed knowledge of the data.
perform the regression at a later tingve need appropriate conditions at that later time
which should encode the later effect of the initial data (2). The problem now at hand is h
to find these conditions and how to do it efficiently, in linear and in nonlinear problems.

For readers conversant with Bayesian statistics, we note that the measieeprior
measure in the Bayesian sense and that the effect of the partial data is to produce a pos
measure. The invariant measure constitutes prior information in the sense that, as we
see, everything that is not conditioned by the partial data obeys the prior distribution.

We have already explained our basic approach in [4—6]; rigorous results can be foun
[12]. Inthe present paper we explain it in a different way which we hope is more transpare
the suggestion that a weak formulation is the right starting point is due to Gottlieb [1
The paper has several goals: to explain what constitutes the novelty of our approacl
show how it meshes with field-theoretical perturbation methods, to give a simple, expli
nonlinear example of the ways in which the basic algorithm differs from, and is superior
a numerical method that uses the information in the initial data without taking advantage
the prior statistics, and to discuss the domain of applicability of the current implementat
of the basic ideas. Our examples are of &dmger type.

Other work along somewhat analogous lines includes Scotti and Meneveau [24], whe
“fractal” interpolation can be viewed as an analog of sampling a measure, and a stoch:
construction by Vaillant [25].

A comment on notations: The notation in Eq. (3) is clear but cumbersome. A shor
version isv = E[u | V]. We shall also use the simpler but less transparent physicists’ n
tations(u) for E[u] and (u)y for E[u | V]. Both notations(u)y, E[u | V] are of course
shorthands fotu)y, g, , etc., since the conditioning (2) depends on the kernels as well as
the right-hand sides.

The paper is organized as follows. In Section 2 we present an overview of optin
prediction. In Sections 3, 4, we present some needed background material on regre:
and invariant measures. In Sections 5, 6 we explain how perturbation theory can be |
to implement optimal prediction in nonlinear problems and provide examples of succ
and failure in problems with sparse data. In Section 7 we provide a detailed analysis
problem in which perturbation theory is carried only to zeroth order (but with a ground st:
that our previous work shows to be optimal), and in which the kernels are trigonomef
functions. These simplifications yield results that are particularly transparent. Conclusi
are drawn in a final section.
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2. WEAK SOLUTIONS, REGRESSION, AND PREDICTION

We start with well-known considerations about weak solutions of linear equations; th
lead naturally to an algorithm for solving underresolved linear equations, which will t
useful below, in particular because we shall be able to present our proposals by way
contrast. Consider the equation

U = Lu, 4)

where L is a linear operator. Multiply (4) by a smooth test functignfor simplicity
assume that the boundary conditionsware periodic, and thug can be also assumed
periodic. Integration over a periodic domaindirand betweemh= 0 andt = z, followed by
an integration by parts, results in

/t_o/(gt + Ligiudx dt+ (u(x), g(x)) — (u(0), g(0)) =0, ®)

where(u(t), g(t)) denotesf u(x, t)g(x, t) dx andL ' is the adjoint ol . A weak solution of
(4) is afunctioru(x, t) that satisfies (5) for all test functiogqsee, e.g., [19]). In particular,
if the test functiongy, satisfy the adjoint equation

a&JrLfgazo, a=1...,N, (6)

at

thenu is a weak solution of (4) provide@, g,) is a constant independentiofor eacho.
This observation produces a possible numerical method for solving (4). One can constrt
collection of functiongy, that satisfy the adjoint equation (6), find the numerical valjes
of the inner productsu, g,) (g=g(X, 0)), u being the initial data, and finally reconstruct
the weak solution at a later timefrom its inner products with the functiomgx, 7). These
functions,g(x, t), can be found at time= t if they are known at = 0.

If this method is used with a small number of functions (i.e., shgllthe solution at
a timet > 0 will be underdetermined. In this case one can use the invariant mgasare
“fill in” the gaps through regression, i.e., replace the weak solution which is not complete
known by its average (as determinedbyover all solutions that satisfy thd conditions
(0w, W) =V,. In other words, replace the functianwhich is not completely known by
the regression = v(x, t) = (u)y. Some technical background on regression follows ir
Section 3.

Note that so far, the construction resembles what is quite commonly done in underde
mined linear problems (for example, in the context of data assimilation [1]; the funcfions
are analogous to the “representers” which are used there). The construction is computa
ally useful in certain linear problems even when alternate ways of finding future regressi
are available, as happens whenever time evolution and averaging commute (see [5]). |
ever, the construction just presented is restricted to linear problems, and the amount of v
needed to evaluate and store the kernel funct@nmay not be trivial. It is also clear that
not all of the available information has been used, as the evolution of the kegneds
independent of the invariant measwureand the measure used in the regression need not |
connected with the differential equation. Indeed, in geophysical applications the meas
is chosen according to considerations quite extraneous to the differential equations wi
may be only partly known.
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We now wish to show how the machinery can be modified through the use of the invari
measure in the evolution equations for the conditions, so that it becomes more efficier
well as generalizable to nonlinear problems.

First, we must view the calculations differently. The meaguimeduces a measure on the
space of the datathat satisfy the initial conditions: tleenditional measurg.y, . In principle,
one can sample this induced, initial conditional measure by sampling the meaanc
then keeping only those samples that satisfy the initial conditions. The initial conditior
measure depends on the parameétgrd he resulting conditional measure is not invariantin
time for example, if the initial conditions consist bf point-values of the functions(x, 0),
i.e., if we assume that at=0 we have data that satisfy(x,, t =0) =V, (the functions
g, are thens functions), there is no reason to believe that the solutions of the different
equation that start from these data will satisfy these same conditions at all subsequent t
with the sameV/,,. We wish to average the solutions at later tirhasd we therefore have to
find the ways in which the constraints on the initial data affect the distribution of solutio
at later times. This is our central problem: in general, the future effect of partial initial de
requires the determination of the complete probability distribution of the solutions at la
times, and this is too hard to do. We are looking for an efficient, accurate, way to find
later effect of the partial information given at tinhe= 0 by following in time only a small
number of variables.

Imagine first that one can sample the initial conditional meagyrdind the (in general,
weak) solution of Eq. (4) that has this datum as initial condition and perform this proced
repeatedly. At time this produces an ensemble of functian, t) which inherits a mea-
sure from the initial data. In principle, this measure is well-determined; we wish to determ
it in practice and then to average with respect to this measure so as to obtain wha
call anoptimal prediction Note that if the temporal evolution governed by (1) is ergodic
with respect to the invariant measure, the conditional measure will eventually relax to
invariant measure and the initial conditions will be forgotten; we are in fact dealing witt
computational analog of non-equilibrium statistical mechanics.

Given the initial conditional measure, we can find the statistidswfor, in the general
case (1), the statistics &(u) and consequently the statisticapfthus, the evolution of the
measurewy can be determined for a short time intervetl. We cannot go beyond a short
time interval because the measurg at timeAt can no longer be described as the invarian
measure conditioned by the initial conditions (2), at least not with the same fungtions
and the sam¥,,. This leads us to the closure assumption:

Assumption [Closure]. The conditional probability measure at tirheuy, (t), can be
approximated by

v () = uv, (7)

where the left hand sidey (t) is the measure conditioned by the initial data (2), while the
right hand side is the invariant measure conditionedNbgffine conditions of the form

(9 (D), u)) = /ga(x,t)U(x, t)dx =V, ().

The kernelgy, (t) and the value¥, (t) of the inner products will generally be different
at timet than at time =0, but it is assumed here that the affine form of the conditions ar
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their number remain constant. We have already seen that in the linear case Eq. (7) is in
a theorem (a different analysis of this fact was given in [5]).

It should be noted that even though this is the assumption that will be used in the pre:
paper, it may be unduly restrictive in other situations; there is nothing magical about keer
the number of conditions fixed, and the conditions need not in general be affine.

What we wish to do is to advance the measure to tithand then to find the conditions
that produce that new measure at the new time. We assume that at all times the measu
the space of solutions that issue from the initial data can be approximated as the inval
measure modified byN constraints. The process can then be repeated as often as «
may wish. In the linear case we have already produced a recipe for updating the conditit
there, we let, satisfy the adjoint equation and keep the numbgrxed. We now propose
different,approximateways of finding conditions that describe the evolving measure. W
are going to do so by matching moments; on one hand, we will calculate moments of
conditional measure by regression from the old moments, and on the other hand, we
produce conditions that produce the new moments from the invariant measure; this
produce equations of motion for the conditions.

More specifically, suppose that we compdgmoments o, at timeAt. For example,
setq =2, and compute the means and the variances with respect to the conditioned mee
of the random variables(x, At) at each of theN pointsx,. We can do this knowing the
conditions at timet =0 and the invariant measure. On the other hand, suppose we
the functionsg, depend ormg — 1 parameters; for example, =2, then we can pick
Ou (X) = exp((X — Xy)%/0,), Where the “centers¥, are fixed and the numbess may be
allowed to vary in time and will serve as our parameters. If we write down the requireme
that the moments we calculated at timé match the moments produced by conditioning
the invariant measure by affine conditions with unknown values of parameters such as
o, and unknown values of the right-hand sidgswe obtainN g algebraic equations for the
parameters, which we can try to solve. If we solve these equations successfully, we ob
a set of simultaneousrdinary differential equations for the parameters and the moments

Before carrying out such a calculation, two remarks: There is no a priori guarantee t
the algebraic equations we will obtain can be always solved: The basic assumption may
and the choice of parameters may be unsuitable. A good numerical program will info
us that a solution cannot be found. However, if a solution is found, the resulting mome
arerealizable It is well known that closures may well produce moments that not only fa
to solve the problem at hand but do not solve any problem, because there is no stoch
process that admits the computed moments as its moments (see, e.g., [22]). This is of
major difficulty in the formulation of mean equations, and it does not arise here becaus
conditional measure is a measure and it produces realizable moments by definition.

We limit ourselves in the present paper to the aasel; i.e., for eachr,a=1,..., N
we keep track of a single quantity, which we choose to be the mean value of the in
product ofg, andu, (g, W))v = (g, (U)v), While at the same time we modify a single
parameter in each condition; that single parameter is chosen to be theWabdfithe oth
product. Thus, while in the discussion above we allowedjth® vary, we simplify the rest
of the presentation by keeping them fixed and changing only/th&hus, we must have
fora=1,..., N,

d
aVa = (o, UD)v = ((Go, RWN)IV = (G, (RW)IV),
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whereR(u) is the right-hand side of Eq. (1). The final equation,

dv,
T = (0> (RW)v), a=1...N, ®)

is the main equation used in the present paper. The more transparent mathematical not:

dV,
dt

= E[(Qw, RW) | V1,...,W], a=1...N,

makes explicit the fact that we are dealing with a systei ofdinary differential equations.
Once thev, are found at time, a regression can be used to find the average solution at a
point x (see Section 3). We shall call an algorithm that uses, in the matching of mome
and parameters, only means of the unknown solutions and no higher moments, a |
order prediction scheme; in the present paper this is the only prediction scheme we ¢
use. We hope to demonstrate that a first-order prediction is often an improvement c
algorithms that take no cognizance of the invariant measure, in the sense that it reqt
less computational labor than the alternatives; higher-order and more sophisticated opt
prediction schemes will be described in subsequent work.

It is useful to contrast our algorithm with the one at the beginning of the section. \
are keeping the kernetg, fixed while changing the valuég, of the conditions, while the
“natural,” linear construction at the beginning of the section did the opposite.

When can we expect the first order optimal prediction scheme to be accurate? In a lir
problemu; = Lu, ifthe kernelsy, are eigenfunctions of the operatdradjoint toL, then one
can readily see from the analysis at the beginning of the section that Egs. (8) are exact
this remains true if thg, span an invariant subspacewf+ L’ = 0. Lowest-order optimal
prediction should be accurate as long asghepan a space that is approximately invarian
under the flow induced bl (see [11, 12]). This remark also provides a recipe for choosin
the kernels. Something similar remains true in nonlinear problems [7, 16, 26]. Define
space of functions spanned by the kerrggl$o be the resolved part of the solution; Egs. (8)
should yield an accurate prediction of this resolved part (including a correct accounting
the effect of unresolved components on the resolved components) as long as there
substantial transfer of information from the resolved part to the unresolved part and be
if such information transfer should occur, a correct description of the flow should inclu
an additional, “memory,” non-Markovian term. This remark also points out that Egs. (
should not be accurate for very long times (because memory terms are important to
description of decay to equilibrium), and should be better at low temperafutiean at
high temperatures (because the decay to equilibrium should be more rapid afhigh

There are other ways to ensure the accuracy of a first order optimal prediction sche
The quantitiesd,, R(u)) are, of course, random variables whose distribution depends
the measureuy . If the standard deviations of these variables are small, then Egs. (8) :
be good approximations to the exact solution. Indeed, Eqgs. (8) merely equate these rar
variables to their means; a higher order approximation would take into account the varia
of these variables as well. The smaller the variance of the variaipe®(u)), the smaller
the error we expect; to some extent, we can control this variance by choosing the ker
appropriately. The larger the support of the kernels, the more these variables represent s
averages, and the slower we may expect their variance to grow; thus if the scheme is t
accurate, itis most likely that the functiogg should not be narrows-function-like objects.
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Furthermore, the kernels should not have disjoint supports (for an analogous observatic
the theory of vortex methods, see, e.g., [3]). Rigorous error bounds for the linear case
be found in [12]. These conditions allow us to call the varial§tgs u) that appear in (2)
collective variablesthey are groupings of variables. Note that as the nuribafrcollective
variables increases, optimal prediction homes in an ever smaller set of initial data, and
variance of the variable®,, R(u)) should decrease.

Finally, the presentation above started from a discussion of weak solutions, and indee
all the examples below the solutions will be weak; why is that so? We shall present a deta
mathematical analysis elsewhere; here it should suffice to comment that if the solutions
not highly oscillatory on several levels, there is less interest in analyzing methods that
to resolve them; solutions that do oscillate significantly on several scales appear, on
largest scale, as non-smooth and therefore weak.

3. REGRESSION FOR GAUSSIAN VARIABLES

It was mentioned in the previous section that once the data that condition the state of
system are found, or, at tinte= 0 once the initial data have been chosen, the remainder
the solution can be replaced by a regression. Formula (8), the first order optimal predic
formula, is also a regression formula (an average conditioned by partial information).
illustrate regression, and more importantly, to remind the reader of formulas that will
used in the sequel, we collect in the present section some regression formulas for Gau:
measures, both for the discrete and the continuous case. More details can be four
standard books (e.g., [21] as well as in [6]).

We start by describing how to perform regressions on discrete sets of Gaussian (nort
variables. Leti=(ug, ..., U,) be a real vector of jointly normal random variables; it has ¢
probability densityf (u) of the form,

P(si<ui<s+ds,...,S<Up <, +ds) = f(9ds...ds,

= Z‘lexp(—;(& As)+b~s>dsl...dsn, (9)

whereZ is the appropriate normalization factse= (s, ..., $), and then x n matrix A
with entriesa;; is symmetric, positive definite, and has an invefsé. The matrixA~1 is
the pairwise covariance matrix with elements

a;t = Cov{ui, uj} = (Uiuj) — (i) (uj),

where the brackets;), denote averaging with respect to the probability density; the vect
b with components; is related to the expectation valueswpf(u) = ((u1), ..., (Un)), by

A~lb = (u).
The distribution is fully determined by the means and by thén(n +1) independent

elements of the covariance matrix, and therefore the expectation value of any observ
can be expressed in terms of these parameters.



OPTIMAL PREDICTION FOR HAMILTONIAN PDES 275

Next, we assume that the random vect@atisfies a set of conditions of the affine form,
Ouili = V,, a=1...,N<n, (10)

where the indexx enumerates the conditions and summation over repeated indices is
sumed. Each equation in (10) is a discrete analog of one of the equations in (. he
matrixG, whose entries aig,; , determines the full set of conditions. To distinguish betweel
the random variable@i,, . . ., u,), and the collective variablg¥;, . . ., VN), we enumerate
the former by Roman indices and the latter by Greek indices.

Our goal is to compute regressioigg (u) | V], for various functiong, i.e., conditional
expectation values, or equivalently, averages over the functions that satisfy the conditi
We state three lemmas that will become handy below; for proofs, see [6].

LEMmMA 3.1. The conditional expectation of the variablgssian affine function of the
conditioning data Y,

(Ui)v = qiozva + G, (11)

where the nx N matrix Q whose entries are the g and the n-vectoc, whose entries are
the g, are given by

Q= (A'GH(GA'GH™,

(12)
c= A1 - (AIGH(GAIGH L GA D),
where the dagger denotes a transpose.
LEMMA 3.2. The conditional covariance matrix has entries
Cov{ui, uj}v = (Uiuj)v — (Uv(ujv = [At = (ATGHGAIGH M GA ™y,
(13)

where the subscrifdfl;; denotes th¢ij} component of a matrix.

LEMmA 3.3. WicKs theorem holds for constrained expectatiaramely

ﬁ - )} = 0, P odd
e} e 'e/V v | ZpemCoV{ui,. Ui}y, - Cov{ui, . Ui}y, Peven
(14)

where the summation is over all possible pairings of the P coordinates that are in the i

Equation (11) shows that conditioning data alter expectation values linearly ¥,the
and independently of multiplicative factors in the covariances. Equation (13) shows t
conditioned covariances are determined by the m&ratone, without reference to thg .
Equation (14) shows that the conditioned Gaussian distribution, while not satisfying
requirement that the covariance matrix be non-singular, retains a key property of Gaus
densities.

In the applications below we shall use Gaussian variables parameterized by a contini
variablex, i.e., Gaussian random functions= u(x). Their means(u(x)), and covariances,
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a~l(x, y) = (uxu(y)) — (u(x))(u(y)), will be defined for allx, y) in an appropriate range
rather than only for integer values 6f j). The matrixA—! becomes the integral operator
whose kernel is a functioa™!. The kernel = a(x, y) of the operatoiA inverse toA~* is
defined by

/ a~l(x, y)a(y, 2 dy = 8(x, 2).

The vectors with entrieg,; become functiong, (x), and the conditions (10) become
Egs. (2). The regression formula, (11), then changes into

UX))v = (Ux)) 4 cg(x) [Vﬁ - </gﬂ(y)U(y) dyﬂ,

where

Cﬂ(X) = {/ (X y)ga(y)dy} aﬂ’

and them are the entries of the matrid ~1 whose inversél has entries

Mo =// G ()" (X, Y)gs(y) dx dy.

The formula for the constrained covariance can be obtained from (13) by replacing e
i by anx, eachj by ay, and each summation over a Latin index by the correspondin
integration. Wick’s theorem is still valid with the appropriate changes in notation; note tt
the Greek indices, which refer to tiNinitial data, remain integers.

4. AN OVERVIEW OF INVARIANT MEASURES AND HAMILTONIAN FORMALISMS

Before proceeding with our numerical program, we summarize some material
Hamiltonian systems, invariant measures in finite and infinite dimensional systems, .
the properties of certain measures. This material can be found in books on quantum
theory and related topics (see, e.g., [10, 18, 23]). More specific references will be gi
below; we take a very elementary point of view.

A Hamiltonian system is described in terms mof‘position” variables,q;, and their

associated “momentayy, i =1, ..., n; a Hamiltonian functior{ =H(q, pi) = H(q, p)
is given, and the equations of motion are
dg dp :
— =H,, = , =1,...,n 15
ar e at = e ! (15)

If the initial values of the B variableqy, pare given, itis assumed that the system (15) has
global solution in time. Suppose the initial data are chosen at random imtdah2nsional
space, with a probability densit/(q, p, 0); it is easy to check that the probability density
of theg’s and p’s at timet satisfies the Liouville equation (see [10]),

ft—i-Z[dqf OIIQf}zo. (16)

An invariant density is a probability density that does not depend on time, i.e., one tl
satisfies Eq. (16) with; = 0. Recall that by the definition of a probability densify> 0,
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and [ f dpdqg=1 (with obvious notations). One can readily see that any functiok of
with these two properties is an invariant density; the one that is natural for physical reas
is f =ZYexp(—H/T), whereZ is a normalization constant afidis the “temperature.”
We setT =1 unless specified otherwise. If the initial data are sampled from this initi
distribution, and each of these samples is used as an initial datum for the equation
motion, then the probability distribution of the variablgsnd p at any later time will
be the same as it was initially. We now wish to generalize these notions of Hamilton
systems and invariant distributions to the infinite-dimensional case, where the equatior
motion will be partial differential equations and the invariant distributions will be calle
“invariant measures.” We do so by way of an example that will be used in later sections
Take the interval [0 2] and divide it inton segments of length. At each mesh point

jh, j=1,...,n, define variables, p;; introduce the “Hamiltonian”
n 2 2
(Pit1— Pi) (i1 —a)
H="> h{ e T oz T RRLG). 17)

i=1

where values of], p outside the interval are provided by an assumption of periodicity
and the term in brackets is a Hamiltonian density. Consider the set of ordinary differen
equations,

dp 1

at thi = Anq — Fq, (18)

whereApq = (041 — 20 + ¢ _1)/h?, and similarly,

dg 1

Gt = nte =D+ Fy. 19)

Note that the right hand side contains a fadtot that has no analog in the finite dimen-
sional system above; its effect is to differentiate the Hamiltonian density rather than
Hamiltonian itself. This modification is needed to get self-consistent limits as 0, a
limit operation we shall now undertake (see [10, 18])./As> 0, these equations formally
converge to

{ptZQXx—qu

(20)
G = —Pxx + Fp,

or, writing u=q+1p with imaginary1 and F'(u) = Fq +I1F,, we find an equation of
Schidinger type,

Ut = —Uyy + F'(U). (21)

The Hamiltonian, (17), converges formally to

rri
/O [ZIUXIZ+F(U)}dx, (22)

where the vertical lines denote a modulus. The limit- O requires further examination;
see, e.g., [23] for a physics analysis and [15] for a mathematical analysis.
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For every finiteh, the (finite dimensional) measure

z7t exp[—h > <|u.+12;2u.|2 + F)] (23)

is invariant for the system (18)—(19). Note that this is true both with and without the exi
factorh~! in Egs. (18)—(19). What is the limit of this measurehas> 0? Set for a moment

F =0. The exponential in (17) factors into a product of terms each one of which is tl
exponential of a single difference quotient, of the form ex@ji 1 — pi)?/2h] or with q
replacingp. Hence, thep variables are independent of thevariables. Furthermore, the
“increments”pi.1 — Pi, Qi1 — i, are obviously Gaussianly distributed, have a varianc
proportional to the distandg and are all independent of each other. Thus in the limit, th
functionsq(x) (and similarly forp(x)) are made up of independent Gaussian increment
They differ from Brownian motion (see [9]) by being periodic rather than satisfy{fy= 0
(they are “Brownian bridges”™—which does not make a deep difference). Also, as long
F =0, the common value af(0) andq(2r) are undetermined because the exponent o
the exponential is unchanged when one adds a constant t;tbh@e can remove this
degeneracy by adding a term to the exponent that is sensitive to the va(® .ofhus, the
limit of

g2 02
Z‘lexp{—hZ[(q'Hthq') +(p.+12h2p.) + F(q, p):|}dQ1'-'dQIdp1'--dpn,

can be written as

dBC-exp<—/Fdx>, (24)

whereB; is a suitably conditioned Brownian (Wiener) measure.

Asiswellknown (see, e.g., [9]), a sample Brownian path is, with probability one, nowhe
differentiable. This fact is not changed by the factor@expFdx) in (24); thus if we sample
initial data from (24) we obtain weak solutions of the equation of motion (21), as was inde
assumed in Section 2. In addition, the integﬁajx|2dx diverges, so that the limit in (17)
is purely formal; its meaning is given by Eq. (24). An important consequence of the
facts is that the exponential in (23) tends to zerchas 0; this is indeed necessary if
we are to have a reasonable function-space measure:-A9, we have a measure on a
space of increasing dimension, the density of functions that satisfy the set of inequali
S <@ <s +ds, i=1,...,n,should decrease asgncreases, thus expH) should tend
to zero andH should diverge.

Weak solutions that are spatially like Brownian motion are difficult to resolve; differenc
guotients do not converge, and the Fourier series expansions of these solutions con\
slowly. We are thus consistent: our machinery applies in problems where itis indeed nee
Such problems are not exceptional; for example, in the vanishing-viscosity limit, the so
tions of the Euler equations have aldér exponent of A3; i.e., they are even less smooth
than Brownian motion (see [20]).

Finally, a computational comment that will be useful below: Brownian motions an
Brownian bridges are easy to sample via interpolation formulas related to the regres:
formulas of the previous Section 3 (see, e.g., [2, 17]); to modify the measures so a:
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take into account the factor e&p | F dx) requires simply that the samples be rejected o
accepted with some form of a Metropolis algorithm.

5. AN EXAMPLE OF CONDITIONAL EXPECTATIONS
WITH A NON-GAUSSIAN PRIOR

Our goal in this section is to introduce a systematic approach for solving the equati
of optimal prediction (8) for nonlinear equations of the form (1). We assume that Eq. |
has Hamiltonian form; i.e., we assume that there exists a Hamiltéhisurch that (1) is the
Hamilton equation of motion with this Hamiltonian. We can therefore assume the existel
of a prior measurey (u) whose densityf has the form

f(u)=2zte "W, (25)

with Z a normalization constant.
In order to solve Eqg. (8), we must compute the conditional expectations on its RHS,

(@, (RW)v), (26)

with R being the RHS of Eq. (1). This task is relatively simple when the prior me:
surepw is Gaussian; we address here the problem of what to do when it is not. The met
we present is based on perturbation theory; see, e.g., [8, 13, 14]. The idea is to reduc
computation of (26) to the computation of regressions with respect to a Gaussian mea
via a perturbation expansion.

We start by splitting the Hamiltonian into two parts,

H=H"+H (27)

HereH is quadratic (producing a Gaussian meagueand?* is a non-quadratic pertur-
bation. A conditional expectation of a functiors&l(u) is defined as

(Fly = 2 / F day, (28)

with the normalization constat = [ duy. Averages with respect to Gaussian measure
will be singled out by a superscript 0,

(F)Y = Z5* / F(u)dul. 29)

with Zo= [ du{. Based on the Hamiltonian split, (27), we can carry out the expansion

~H _ —HO > (_1)k 1\k
et=¢ Z W (H™)", (30)
k=0 '

which can be then utilized to write

. (o] 1 K
/ Fuyduy =Y - / [FU)(HH ] dps. (31)

= k!
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Hence, combining (28), (29), and (31) we find

ad 1kZ
Z L 20 s,
k=0 k!

The ratioZy/Z is

(@)‘1_ Jduy = (DX [(HH*duS i

z) T Ay T &= K [dud -

and therefore

S reo((=D* /KD ((HH*F),

Fiv =
Vv =55 (COR KD (RS
In particular, fore =1, ..., N,
D¥/k1) (o, (R(U)(HE
(G, (R(U))Y) = > k(= DX /KD (g, (RUY(HHS)Y) 32)

Skeo((=DR/KD((HHK)Y,

The RHS of (32) is now written in terms of expectation values that we already know how
compute since they are averages with respect to a Gaussian measure. Note that the di\
by Z/Z, can be avoided by removing certain terms from the numerator of (32); indee
(32) is a conditioned expansion in Feynman diagrams and it can be normalized by remo
unconnected graphs (see [8, 13, 14]). We choose not to explain this fact here. Note alsc
the leading term in the expansion, (correspondirigtd)), where the measuge, is simply
replaced by.$, already contains a contribution of the nonlinear terms in the equation
motion.

Computing a finite number of terms in the series expansion (32) can still be a relativ
complicated task, and we demonstrate in Sedsia step-by-step solution of a model prob-
lem. The reader should not be unduly worried by the complexity of some of the expressic
because: (i) To make the exposition as clear as possible, no advantage is being taken
of various ways of simplifying the expressions, such as, e.g., using orthogonal functic
for the g,; (ii) much of the algebra can be automated (see below).

The partition ofH into Gaussian and non-Gaussian parts is not unique, and in Section
and 7 we shall discuss some ways to optimize it in order to gain accuracy.

6. A PERTURBATIVE TREATMENT OF A NONLINEAR SCHR ODINGER EQUATION

We now utilize the perturbation method to approximate solutions of the nonline
Schiodinger equation of the form (21),

1
U = —Uyy + 21[3|u|2u +u], u=q+ip (33)

in the interval [Q 2], with periodic boundary conditions. Equation (33) can also be writte!
as the pair of equations,

Pt = Oxx — O°, (34)
Ot = —Pxx + p3~
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The corresponding Hamiltonian is

H(p,q) = % / (pi(x> + () + %[p“(x) + q“(x)]) dx, (35)
and hence, Eqgs. (34) preserve the canonical density
fo(p,q) = Zte P9
(Note that the temperatufiehas been set equal to 1.) To simplify the example, we follov

[6] and use the same kernels in the definition of the collective variableg &rdq, i.e.,
the collective variables are

{Ug?’ Uo?}:{(gaa p)7(gavq)}v Ot:l,...,N, (36)

and their initial valuesYP, V3, are given. The system of ordinary differential equation:

VIRl

arising out of Eq. (8) for th&/ P, V3 is

q - a=1...,N. (37)
O — (G, 25 (P)v) + (G (PEV),

{"dvf = +(Gu> 22 (A)v) = (G- (T3)0),

We therefore have to compute the four terngs, Oxx(d)v), (Jus dxx(P)V)s (Das (G3)y),
and(g.. (p%)y).

The first step is to split the Hamiltonian into two parts—a quadratic and a non-quadrz
part, H =H° + H*; this will be done in the next section. We will just note at that point.
that° will be of the form

1
H=3 / [PL00 + 6200 +mo(p°00 +°00)] dx.

Once this is done, the RHS of (37) can be computed following (32). For example, the te
(9« (p®)v) can be obtained by substitutingf for R(u) in that equation. In particular, the
zeroth, leading term is

(G» (P%)V) (38)

(note that this term already includes a nonlinear effect); a first-order (in the perturbat
series) approximation will add the term

34,1,0
(gvts<pHZ)V)’ (39)
(1—(HYy)
and so on, with similar expressions for the rest of the terms on the RHS of (37). Note tha
these expansions are used to solve the equations of first-order prediction; in principle
can perform higher-order predictions by using higher moments in setting up the matct
of conditions before Eq. (8), and then improve the evaluation of the right-hand side
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Eq. (8) by using more terms in the perturbation expansion. We consider here only the Iz
possibility.

The leading-order terms (38) can be computed using the results of Section 3. For
first-order term, (39), we have

0

1
(PPHY). =4<p3/[p“+q“—2m3(p2+q2)]dz> ;

\%

and we therefore have to compute

0 0
<p3/psd2> = /<p3(X)p5(2)>3dz, <p3/qsd2> =/<p3(X>qS(Z)>3dz
\Y z \V z

for s=2, 4. To summarize, the RHS of (37) involves integration (with respea) tand
differentiation (with respect ta) of the following (withj =1, 3 ands=2, 4)

PP @), (PXOE@)Y), @ 0p@)Y, (@ x0a@)).  (40)

The terms in (40) can be computed by application of Wick’s theorem (Lemma 3.3); t
algebra can be performed with aid of a symbolic computer program (such as Mathemati
In particular, one obtains the identities

(PO PP(2)) = —2(P(O}(P(2))* + 2(p(2)){P(X) P(2)) + (P(X))(P*(2))
(PO P* (@) = 6(p()) (P@)* — B(P(@)* (PO P(D) — 12(p(X))(P(2))*(P?(2))

+12(p@)(p() P2} (P(@)) + 3(p()) (P2(2))°

(P’ P*(2)) = —12(p())*(P@)(P(X) P(2)) + B(P*(X)){P(D)(P(X) P(2))
+(p))*(6(p(2)* = 2(p*(D)) + (P()[6(P(X) P(2))?
+(PP00)(—6(p(2))* + 3(p*(2)))] (41)

<(P’00p*(2) = T2(p(0))*(P(2) (P(X) P(2) ((P(D)? — (P*(2)))
+ (p00)3(—20(p(2))* + 36(p(2))%(pX(2)) — 6(P2(2))
+12(p(2)) (P(X) P@N[2(P(X) P(2))* + (P*(X)) (—2(p(D))?
+3(P*@N] + AP (P(X) P(2)*(—2(p(2)* + (P*(2)))
+(p2(0) (2(p(2)* — 4p@)2(PX(D) + (P?(@)7)].

All the averages in Eq. (41) are of course conditioned/pyhe constant repetition of the
subscriptV and the superscript 0 has been avoided for esthetic reasons.

We now pick the kernelg, (X) to be translates of a fixed functigiix), i.e.,g, (X) = g(X —
Xy ), Which is a normalized (not random!) Gaussian with periodic images and width

gx) = Z [ ()(_27”)} ) (42)
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We note that the Fourier representationgok) is g(x) = & S0 e~ @/4K* Given
this choice of kernel functions we can write

N

(POO)Y = D cfPOOVY, (43)
a=1
where
cPP(x) = cd9(x) = ﬁzlkz k2 - exp[|k(x — xp)I[m™155,
and

o2

Mfo = 5 Z - i@ Pk — %))

This choice of kernels is the same as in previous work [5, 6]. It is far from optimal in t
context of perturbation theory; in particular, orthogonal kernels such as the Fourier kerr
used in Section 7 below reduce the number of non-zero terms in the expansion. We tho
that we should present at least once a perturbative calculation with a general kernel.

6.1. The partition of the Hamiltonian.We now turn to the question of how exactly
the Hamiltonian should be divided into a sum of a quadratic part and a perturkfgtien,
HO + H?. Of course we wish{* to be as small as possible, so as to have a perturbatic
series that behaves as well as possible; we therefore perform a partition with a few
parameters over which we shall minimiz€; we choose to write

1 27
HO = é/ (Jux|® + mdJul® + b) dx
° (44)

2
leé/o (F — m3|ul® — b) dx,

where, as beforaj=q+1p, F = %(p4+q4). There are no odd powers in the partition
because the measure is invariant under the refleation(—u); note that the ternm3|u|?
removes the indeterminacy in the Gaussian measure defingt byhis is not the only
partition that can be considered; one could for example add and subtract squares of fract
derivatives ofu. The task at hand is to choose good values for the parantageandb.
They cannot in general be chosen so as to make the perturbation series convergent;
one would really want is to make the measure definedthgnd conditioned by th¥/,

be a small perturbation of the conditional measure definetitfyyand while this can in
principle be done, and would presumably lead to time-dependent equationgdondb, it

is reasonable, as a first try, to choasgandb so as to minimizéH?), ((H1)?), where the
averages are unconditional. Note also that the presence of thb keanes all averages with
respect to the measure defined®y unchanged—it gets absorbed into the normalizatio
constantZ—but it does affect the expansion of ex#*).
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A straightforward algebraic manipulation, simplified by the fact thandq are uncor-
related and thatp®) = (g®) for all s, leads to

(HHH° = 15 / / dx dZ2(p*(x) p*(2)° + 2((p*(x))%)? — 8mj( p*(x) p*(2))°
—8ma(p*(x))%(P?(2))° + 8MG((P*(x))D)? + 8MG(P*(X) p*(2)°].  (45)

where the(-), denotes average with respect to the unconditional Gaussian measure. U:
the expressions (41), one can numerically minimize (45) as a functiog. dthis minimum
is obtained amg ~ 1.055.

After settingmg, we are free to pick the second constdmin (44). Changind will not
affect the variance which we just computed in (45). We choose to set the first momen
the perturbation to zero, i.e.,

(HH° = 0. (46)

Given the partition, (44), it is clear that (46) holds if

0
br = 411</ [p4+q4—2m3(p2+q2)]dx> . (47)

With the aid of Wick’s theorem and Eq. (43), Eq. (47) can be rewritten as

oo o0

3 1 1
br = | — = —mZ| —— . 48
i [4nk;>ok2+m§ O] k;,ok2+m5 (“8)

If one choosesng = 1.055 so as to minimize the second moment&f), the RHS of
(48) equals—1.197, which in turn determinds= —0.381 so that the first moment of the
perturbation will vanish. Note that even the zeroth order expansion uses information at
the higher-order terms, since the parameters that determine the partition and thus the z
order term depend on an analysis of the later terms.

One should also note that once the future conditions have been determined, one h
perform further regressions to obtain the mean solutions at various points in space;
machinery there is exactly analogous to what has just been done and will not be spellec
here.

6.2. Numerical checks.We now check the perturbation series as well as the optim:
prediction scheme by comparing the results they give with numerical results obtainec
substantial expense by sampling the initial conditions, solving the differential equatic
over and over, and averaging. We concentrate in the present section on tihecasé.e.,

a case where we have initially as data only four values of collective variables and are try
to find the mean future conditioned by these four values. We display only the variati
in time of these collective variablesl?, U3, « =1, 2, which were defined in Eq. (36);
The kernels are taken &s(x) = g(X — X,) with X; =7 /8 andx, =97 /8. The parameter

o is set ast. We first use the perturbation series with the optimal valags- 1.055 and
b=—-0.381 computed in Subsection 6.1. We then display results obtained with differe
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values ofmg andb. Specifically, we choosmy = 0.9 andb =0, obtained by splitting the
Hamiltonian into

0 1 a 2 2 2
H =3/, (Jux]® 4+ mg|ul®) dx,

1 1 o 2 2
H 25/0 (F — mglul?) dx,

and requiring only that the first moment of the perturbation vanish{#£)? = 0 (compare
with (44) and (46)).

We check these results by replacing the continuum equations (34), (37), by a formal fi
difference approximation conditioned by discrete forms of these equations, and then dis
the convergence of the conditioned mean of many solutions of the difference equations t
optimal prediction obtained by the perturbation analysis. Specifically, we replace Eq. (
by the difference equations

% [s[§] —l>—2(?1(21'>+q(j+1) —q3(j), '
j=1...,n, (49)

dq(j i —D—2p()+p(+1 :
ai) _ _pGi-9 ﬂ(ZJ) P(J+)+p3(1)’

whereh =27 /n is the mesh size. The conditions (36) are replaced by the discrete appr
imations

UP=> hag(p(), UI=> haad), «=12 (50)
j=1 j=1

(A factor h has been introduced in the definition of the collective variables to allow the
to converge to the continuum collective variablgs, u) = [ g, (x)u(x) dx.)
The Hamiltonian (35) is replaced by the discrete Hamiltonian,

h <& i +1—p(h]? i+ -q()]® 1, , . .
H(p,q)=52{[pu r)1 pm] +{q(1 r)] q(”} +§[p“(1)+q“(1>]}-
j=1

(51)

We present results obtained with two mesh sizes, correspondmg &andn = 16. We
also checked that the results witk= 32 are very close to the results with= 16. For each
mesh sizeh we use a Metropolis Monte Carlo algorithm to find 5000 initial data drawi
from the distribution defined by (51) conditioned by the values of the collective variable
integrate the equations in time upte= 1, and average the results at various fixed time
intervals. This numerical calculation is very costly, even for moderate valueshaft it
is independent both of the perturbative analysis and of the machinery of optimal predicti
Itisimportant to note that as the mesh dizends to zero, the results of a standard (i.e., nor
averaged) finite-difference solution of Eq. (34) with data drawn from the distribution (5
diverge pointwise als — 0. Conditional averaging provides the only meaningful numerice
solution of Egs. (49) for such initial data.
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optimal prediction with zeroth—order expansion, n=8 optimal prediction with first—order expansion, n=8
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FIG.1. Time evolution of four collective variablés, U, U, andU; for the nonlinear Scludinger equation
(34), (49), with the optimai, = 1.055,b = —0.38; Solid lines, optimal prediction equations. Dotted lines, average
over 5000 solutions obtained from initial data sampled from the discrete Hamiltonian (5I) wi8handn = 16
points.

In Fig. 1 we present the evolution in time of the four collective variahls UJ, U7,
andUj with the optimalmy = 1.055, b= —0.38. Figure 2 presents the plots corresponding
to the choicemy = 0.9 andb = 0. The zeroth-order solution is the optimal prediction solu-
tion obtained with only the zeroth, leading, term in the perturbation expansion (see, €
Eq. (38)). The first-order solution is the optimal prediction solution obtained after addi
a first-order correction to the perturbation series. Note however that the optimal choice
parameters uses information about terms of order one.

In both figures, the solid lines are the solutions obtained with the optimal predicti
equations, while the dotted lines represent an average over over 5000 solutions that e\
from initial data sampled from the conditioned discrete Hamiltonian (51).

Clearly, there is an improvement when one uses additional terms in the perturbal
series. Also, even though the individual numerical solutions converge only weakly tc
continuum limit, the average over numerical solutions with data sampled from the discr
Hamiltonian on one hand and the solution of the optimal prediction equations on the ot
hand get close asincreases. The perturbation expansion converges rapidly; the key gre
is the one on the bottom right of Fig. 1: the comparison between the expansion up to fi
order with the average numerical solution witk= 16. One conclusion we draw from these
graphs and we use in Section 7 is that with the optimal partition of the Hamiltonian one c
obtain an accurate solution with only the zeroth term in the expansion; the computatior
the optimal parameters in the expansion used the first-order term.

The limitations of first-order optimal prediction are displayed in Fig. 3, where the ir
tegrations are carried out to longer times. We are working with a temperaturg, i.e.,
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optimal prediction with zeroth—order expansion, n=8 optimal prediction with first—order expansion, n= 8
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FIG.2. Time evolution of four collective variablés, U, , U;, andU; for the nonlinear Scludinger equation
(34), (49), withm, = 0.9,b = 0; Solid lines, optimal prediction equations. Dotted lines, average over 5000 solutio
obtained from initial data sampled from the discrete Hamiltonian (51) mitt8 andn = 16 points.

the fluctuations iru are of order 1; by contrast, in the longer runs of [5, 6] we used
smaller temperatur@ = /15; we also have only 4 collective variables, not enough &
this temperature to keep the variances of the collective variables small. In Fig. 3 the o
mal prediction solution is based on the optimal choicengt=1.055 b= —0.38, and the

optimal prediction with zeroth—order expansion, n=16 optimal prediction with first—order expansion, n=16
1 1

0.5 0.5

FIG. 3. Longer time evolution of four collective variables’, U}, U;, andU, for the nonlinear Schudinger
equation (34), (49), with the optimah, = 1.055,b= —0.38; Solid lines, optimal prediction equations. Dotted
lines, average over 5000 solutions obtained from initial data sampled from the discrete Hamiltonian (51) \
n=16 points.
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FIG. 4. Long time evolution of the collective variables for initial distributions of the foem*™ with
(@) T=0.2 and (b)T =4.

discrete solution is presented foe= 16. Once again, the numerical solution is an averag
over 5000 individual solutions.

The effect of temperature is displayed in Fig. 4, where we present the time evoluti
of the four collective variabled)P, UJ up to timet =5. Both graphs are for the same
initial values ofU ? andUJ but differ in the temperature which determines the distributior
of initial data. The graph on the left corresponds to a low temperaiuge0.2, whereas
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the graph on the right corresponds to a high temperafute4. As expected, the higher
the temperature, the faster is the decay towards equilibrium; the collective variables t
faster towards their equilibrium value of zero, and the first-order prediction scheme w
a small, fixed number of conditions loses accuracy faster. There are two ways to impr
the prediction: Go to more sophisticated prediction theory, as outlined in Section 2,
increase the number of collective variables. The first alternative will be explored in la
publications; the value of the second approach will be shown in the next section, wit
choice of kernels that reduces the amount of labor and also makes possible an analy
estimate of the difference between optimal prediction and a simple scheme that make
use of the prior measure. Note that the optimal prediction runs yield good results when
standard deviation of the values of the collective variables is as large as 50% of their m
(the standard deviation of the pointwise values of the solutions is much larger still).

7. PSEUDO-SPECTRAL OPTIMAL PREDICTION FOR A MODEL
NONLINEAR PROBLEM

In the present section we consider a discrete version of the samed8ajei’ equation
as above; our goal is to show explicitly how the information in the prior measure improv
the accuracy of an underresolved nonlinear calculation. One of the striking facts shc
by the example is that first-order optimal prediction is useful in nonlinear problems.
view of the rapid convergence of the conditional expectations of discrete problems to tf
continuum limits, as displayed in the previous section, we shall be content with the disci
problem. Specifically, we shall contrast the solution of a discrete problem by a pseu
spectral method that takes no cognizance of the prior measure with a closely related opt
prediction scheme with Fourier kernels and show how the information in the prior meas
improves the predictions. In the present section, a complex-function formalism turns ou
be more transparent, and we therefore slightly change the notations. We consider a s
complex ordinary differential equations which is a formal discretization of ourdgichgér
equation, (33),

au; Uj_1—2uj+Ujy 1 .
i C UL RN 52
with j=1,...,n andh=2x/n. Equations (52) are the Hamilton equations of motior

derived from the Hamiltonian

H(u)=}zn: Mpn = Ui R g ] (53)
2~ h 16" ' )

(see Section 4). One can readily verify that this is the same discrete Hamiltonian as bef
The prior measure is the canonical measure whose density is

fu) = %e‘”“”. (54)

Note that we writau without boldface, as we did in the case of functions, but not as we d
for vectors; this is done by analogy with the previous sections on th@8iclger equation.
(Those who look at our earlier papers [4—6] will notice that the measure here differs fr
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the measure used there by a fad¢tam the exponent, and also that we used a different spati
period.) Equation (54) requires an explanation when the variaklese complex. A set
of n complex variables can be treated as a sethafeal variables. However, when the real
and imaginary partg;, p; of each variables; are independent and their means are zero (a
they are here), one can write

P <th<si+ds,....ri<pr<ri+dr,....r < pn <rp+dry)

=F@dz...dz = Zlexp(—;(z, Az*)> dz ...dzy, (55)

wherez; =§ + Irj, dz =ds dr;, and the matrixA is hermitian. Wher#{ is a quadratic
function of the vectou, Eq. (54) define#\ in the complex case.

The prior measure (54) being non-Gaussian, we proceed as above and partition
Hamiltonian into a quadratic part plus a perturbatitins H° + H*. To make the example
amenable to analysis we keep only the leading term in this expansion; we already poir
out that the leading term contains a contribution of the nonlinear terms in the equat
and that the partition takes into account higher order terms in the expansion. As explai
above, there is here only one relevant partitioning paranmateil hus we approximate the
probability density byf (u) = Z5 e 7", where

n . .12
Ho(u) = ;Z{wmméwnz}. (56)
j=1

We work here witm = 32. In this finite dimensional case, we rederived the optimal valu
of mg as follows: We calculated the two-point correlation funct{uru]-‘)0 for the measure
(54) by a Monte Carlo method, and then found the valumgthat best reproduces this
correlation function by minimizing the mean-square difference between this correlati
function and the correlation function produced by (56). This yietdge: 1.055, confirming
the value obtained above. The procedure used here minimized the difference between th
measure and its quadratic piece while the more general procedure of the previous sec
minimizes only the first few terms in an expansion; it is comforting that the results agre
For readers of our earlier papers [4—6], we point out that the present procedure differs fi
the “Gaussianization” proposed there by using an analytical expression for the approxin
measure, whereas in the previous publications we needed to store the full covariance me
Furthermore, the present construction produces a first term in a systematic expansion.

In Fig. 5 we compare the exact two-point correlation functianif) obtained by a Monte
Carlo sampling (open circles) to the Gaussian approximation (solid line),

0 1 n elk(xi —Xj)

Gij = (uiuj) T kz:; (4/h?)sir(hk/2) + m3’

(57)

derived from (56). The discrepancy is negligible compared with the statistical uncertai
in the sampling procedure.

The formulas for calculating conditional expectations (11)—(13) can be generalized
deal with complex functions. Assume we haNeconditions of the form,

Oui Ui = Vg,
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FIG. 5. Comparison between the two-point correlation function ut), as computed by a Monte Carlo
sampling procedure, and its approximation (57) based on the Gaussian measure (66)witl)5. The number
of points isn = 32.

where theg,; are the complex entries of thé x n kernel matrixG and the entries of the
vectorV,, are the values of thdl collective variables defined bg. The formulas for the
conditional means and variances of the complex vegtaeneralize Egs. (11) and (13);
the conditional average of is

Uy = Qi Vas

theq, are the entries of the matri® = (CG")(GC G ~1, whereC, whose elements are
defined in (57), is the matrix that approximates the inverse of the matdiefined in (55).
The dagger denotes an adjoint (hermitian transposed) matrix. The conditional covaric
matrix has entries

Cov{u;, Ui}y =[C — (CG)(GCG) (GO)Jj;.

We now make a special choice of kern€lsWe pick them so that what is known at time
t =0 is a set of Fourier modes, fewer than are necessary to specify the solution comple
This makes the,; complex exponentials,

1
Oui = ﬁ exq_lKaXi)‘

If the number of conditiondN is even, theK,, take the values-5§ +1,..., J. Note the
following property of the resulting matriss,

L1
GG = 1. (58)
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wherel is theN x N identity. Spectral variables are particularly convenient here becaus
if uis expanded in Fourier series, and this series is substituted into the formula for
Hamiltonian, the result is a sum of squares of Fourier coefficients; the prior meast
is “diagonal in Fourier space.” This can also be deduced from the fact that the measul
Gaussian and translation-invariant in the variablén particular, afteru is expanded in
Fourier series, the matricés C are both diagonal. A short calculation yields

Q=nG/,
from which follows
wd =nG'v, (59)
and
Cov{u;, uf}y = [C — nG'GC]j;. (60)

Equation (59) is the interpolation formula for the first momentoRecall thaty = Gu,
hence(u)y =nG/Gu. The operatonG'G is a Galerkin projection operator which projects
any vector onto the vector space spanned by the ranGe ©hus, the mean af produced

by our regression formula equals the mean obtained from a simple Fourier series that |
the known coefficient¥,, (we shall call this Fourier series the “Galerkin reconstruction”).
This is as it should be. In a translation-invariant Gaussian measure the Fourier compon
are mutually independent; the knowledge of the first few does not condition the next or
whose expected value is therefore zero. However, the measure does contain informg
about the higher moments of the higher Fourier coefficients, and this is important ir
nonlinear problem.

The difference between the Galerkin reconstruction and the regression used in the opt
prediction of moments is demonstrated in Fig. 6. The three graphs depict the first th
moments, calculated (i) by a Monte Carlo sampling of the measure (54) conditioned
N =4 known collective variables (symbols), a Galerkin reconstruction (dashed lines), &
our regression formulas (solid lines). We chose a system size-#2 with N = 4 resolved
(i.e., known) Fourier modes. For the first moment,)y (calculated by Monte Carlo), the
Galerkin reconstruction and the regression are close to each other. For the second and
moments the regression, which is the core of optimal prediction, is close to the truth,
revealed by the Monte Carlo runs; the error is smaller than the statistical uncertainty
the sampling. The Galerkin reconstruction, on the other hand, deviates significantly fr
the truth. These graphs demonstrate the importance of the prior measure, which con
information about the mean squares of the unresolved Fourier components.

We next derive the optimal prediction scheme for our model problem with Fourier kerne
Given a set of Fourier mode¥,,, we replace the right-hand side of (52) by its conditional
average and multiply the result by the kernel ma@ixThus,

1 0
+ 2 [81ui Pui + (ui*)3]> .
4 \Y

dV, / Uip1—2Ui + Ui
dr - N\ h2

Substituting the regression formulas (59) and (60) and using Wick’s theorem and (58),
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Re <lui® u>

FIG. 6. Conditional moments ofi. Comparison between true values (symbols), a Galerkin reconstructic
(dashed lines), and regression (solid lines). (a) The conditional expectatjgn the circles represent the real
part and the crosses represent the imaginary part. (b) The vatighge(c) The third moment Rgu; |2u;)y. The
number of points is1 = 32, and the number of Fourier modes that are assumed knoWg-id.
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obtain the set oN equations

dv, 4 ,Kyh 1 6
|d_t" =1 Sir? TV"‘ +3 Z[svﬁv;vssa,ﬁ_yﬁ + VIV S pye] + cha,
B.v.€
(61)
where
c=[(I =nG'G)C]i  (no summation o)

is a constant (the right-hand side is independent dote that the last term comes from the
evaluation of the nonlinear terms by Wick’s theorem. The structure of Eq. (61) is enlighte
ing. The first two terms on the right-hand side are precisely the Galerkin approximation
the evolution of a subset of Fourier modes; they constitute a pseudo-spectral approxime
of the equations of motion. The third term, which is lineaMnrepresents information
gleaned from the prior measure. The nice feature of this example is the sharp separ:
between the contribution from the resolved degrees of freedom and the contribution of
“subgrid” degrees of freedom, which happens to simply “renormalize” the linear part of t
evolution operator.

One is of course interested in knowing how large is the extra term that makes up
entire difference between the optimal prediction scheme and a standard pseudo-spe
scheme; this difference is proportional to the coefficenh Fig. 7 we plot the value af
as function ofN for n=32. As expected; is larger when the number of resolved degrees
of freedom is smaller and vanishes whidn=n, i.e., when the system is fully resolved.
The oscillations in this graph result from the alternation between odd and even number
Fourier modes. Figure 7 demonstrates that optimal prediction is consistent. As the nun
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FIG. 7. The parameter as a function of the numbet of resolved Fourier modes, for= 32.
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FIG.8. Time evolution of the real part of the 4 lowest Fourier modesfer32. The circles represent averaged
values over an ensemble of“1§tates; the dashed lines result from the Galerkin approximation; the solid line
result from our optimal prediction scheme (61). Results are presented fur=&) and (b)N = 8.

of collective variables increases, its predictions converge to those of a resolved calculat
(as indeed should be obvious from the derivation); when the number of collective variak
is small, the corrections due to optimal prediction are substantial.

In Fig. 8 we compare the time evolution of the first 4 Fourier coefficients predicted by c
optimal prediction scheme (61) (solid lines), the time evolution of these modes predic
by a Galerkin scheme (dashed lines), and their exact mean evolution obtained by samj
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10* states from the conditional measure, evolving them in time, and averaging the f
Fourier components (circles). We do this with=4 andN =8; with N =8 we display
only 4 modes even though 8 are calculated, in the interest of clarity. To make the calculati
with different values oN comparable, we pick the initial values of the collective variable:
in the way suggested by the analysis of Hald [12]: We sample an initial funatfoom

the invariant measure and then calculate values of the collective variables by perforn
the summationg,; ui. The graph shows that in each case the simple Galerkin calculati
deviates immediately from the true solution, while the optimal prediction remains accure
The calculations show that optimal prediction improves the accuracy compared to a Gale
calculation; the time during which the optimal prediction remains accurate increases w
increasingN; we know from (61) that the cost of optimal prediction in this problem is small

8. CONCLUSIONS

We have exhibited the value of the statistical information used in optimal prediction f
the solution of an underresolved nonlinear problem, and we have shown that perturba
theory provides a ready-made machinery for applying the ideas of optimal prediction
problems where the invariant measure is non-Gaussian.

The first-order implementation of optimal prediction with a fixed, small, number c
conditions breaks down after a finite time; the time for which it is valid increases as t
temperature increases; the temperature determines the variance of the invariant me
and thus the uncertainty in the system. There are two ways to improve the prediction:
to more sophisticated prediction theory, as outlined in Section 2, or increase the nun
of collective variables. We have demonstrated the power of the second alternative; the
alternative will be explored in later publications.

Many aspects of the algorithms presented here require further work. The closure
means of a fixed number of affine conditions is only a first step; other closure schemes
be investigated. In particular, optimal prediction fits within the framework of irreversibl
statistical mechanics, whose apparatus can be brought into use for finding closure sche
More powerful versions of perturbation theory can be readily used. A careful perusal
our final example shows that there is a great advantage in using orthogonal kernels; ir
interest of pedagogy, we have not used this possibility in the discussion of perturbat
theory, and we have yet to explore orthogonal bases other than Fourier bases.

An inspection of the formulas derived by perturbation theory shows that though \
assumed a knowledge of an invariant measure, all that is finally used is a set of mome
this is the opening for applying optimal prediction methods in problems where less tha
full invariant measure is known.

We assume that all these issues will be handled as we progress to more complic
problems, in more dimensions, with dissipation (requiring a careful modeling of effecti
Hamiltonians), and with general boundary conditions. We shall explore problems with the
additional features in future publications.
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